Effect of the drying conditions on the microstructure of silica based xerogels and aerogels.
نویسندگان
چکیده
Nanostructured silica based xerogels and aerogels are prepared by sol-gel technology, using methyltrimethoxysilane as precursor. The influence of the drying method and conditions on the microstructure of the obtained materials is investigated, since the drying stage has a critical influence on their porosity. Two types of drying methods were used: atmospheric pressure drying (evaporative), to produce xerogels, and supercritical fluids drying, to obtain aerogels. Although the supercritical fluids drying technique is more expensive and hazardous than the atmospheric pressure drying, it is well known that aerogels are less dense than the xerogels due to less pore shrinkage. However, the ideal situation would be to use atmospheric pressure drying in conditions that minimize the pore collapse. Therefore, in this work, different temperature cycles for atmospheric pressure drying and two heating rates for the supercritical fluids drying are tested to study the gels' shrinkage by analyzing the density and porosity properties of the final materials. The best materials obtained are aerogels dried with the lower heating rate (approximately 80 degrees C/h), since they exhibit very low bulk density (approximately 50 kg/m3), high porosity (95%)-mainly micro and mesopores, high surface area (approximately 500 m2/g), moderate flexibility and a remarkable hydrophobic character (>140 degrees). It was proved that the temperature cycles of atmospheric pressure drying can be tuned to obtain xerogels with properties comparable to those of aerogels, having a bulk density only approximately15 kg/m3 higher. All the synthesized materials fulfill the requirements for application as insulators in Space environments.
منابع مشابه
EFFECT OF INORGANIC HYBRID LiBr ON THE SILICA MATRIX XEROGELS (RESEARCH NOTE)
Abstract The SiO2-LiBr hybrid porous materials were prepared by the sol-gel method. This process was obtained by the hydrolysis and condensation Tetraethyl orthosilicate (TEOS) with replacement of ethanol from alcogel by the drying at ambient temperature to obtain xerogel structure. The alcogel samples were synthesized from TEOS, EtOH, H2O, HCl, NH4OH and LiBr. The total molar ratio of the comp...
متن کاملSynthesis and Study of Lidocaine Hydrochloride from Polymeric Film as a Wound Dressing
Introduction: Among various carrier materials capable of drug controlled-release, silica xerogels have been found to be noteworthy for loading and sustaining drug release. These silica xerogels were synthesized through sol-gel technology using Tetraethylortosilicate (TEOS) as a silica precursor. Methods: This study was an experimental basic research, which aimed to characterize the effect of a...
متن کاملInfluence of Phenyltrimethoxysilane on Physicochemical Properties of Teos Based Monolithic Silica Aerogels Prepared by Supercritical Drying Process
The objective of the present research work is to synthesize transparent, hydrophobic, monolithic silica aerogels with ultralow density by using supercritical drying process. The effect of phenyltrimethoxysilane as a hydrophobic reagent on the physicochemical properties of the silica aerogels has been studied. The total processing time for the synthesis of monolithic silica aerogels minimized to...
متن کاملSynthesis and Characterization of Waterglass-Based Silica Aerogel Under Heat Treatment for Adsorption of Nitrate from Water: Batch and Column Studies
In this work, hydrophobic silica aerogels were synthesized using sol-gel method and drying at ambient pressure. The surface morphology, pore size, and the presence of functional groups on the surface of the nanoparticles were analyzed using FE-SEM, TGA, FT-IR, and EDX, respectively. After calcination at 500 °C, the hydrophilic property of the adsorbents was evaluated by water contact angle meas...
متن کاملFrom colloidal-silica sols to aerogels and xerogels
By destabilization of quasi-monodisperse silica sols, fractal clusters can be obtained. Solvent evacuation gives a porous solid with fractal structure. Structural investigations of these colloidal aerogels by small-angle neutron scattering are presented, and compared to similar observations in concentrated sols and xerogels. An investigation of the vibrational modes of these materials by inelas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of nanoscience and nanotechnology
دوره 12 8 شماره
صفحات -
تاریخ انتشار 2012